Predicting electronic structure properties of transition metal complexes with neural networks
نویسنده
چکیده
High-throughput computational screening has emerged as a critical component of materials discovery. Direct density functional theory (DFT) simulation of inorganic materials and molecular transition metal complexes is often used to describe subtle trends in inorganic bonding and spin-state ordering, but these calculations are computationally costly and properties are sensitive to the exchange–correlation functional employed. To begin to overcome these challenges, we trained artificial neural networks (ANNs) to predict quantum-mechanically-derived properties, including spin-state ordering, sensitivity to Hartree–Fock exchange, and spin-state specific bond lengths in transition metal complexes. Our ANN is trained on a small set of inorganic-chemistry-appropriate empirical inputs that are both maximally transferable and do not require precise three-dimensional structural information for prediction. Using these descriptors, our ANN predicts spin-state splittings of single-site transition metal complexes (i.e., Cr–Ni) at arbitrary amounts of Hartree–Fock exchange to within 3 kcal mol 1 accuracy of DFT calculations. Our exchange-sensitivity ANN enables improved predictions on a diverse test set of experimentally-characterized transition metal complexes by extrapolation from semi-local DFT to hybrid DFT. The ANN also outperforms other machine learning models (i.e., support vector regression and kernel ridge regression), demonstrating particularly improved performance in transferability, as measured by prediction errors on the diverse test set. We establish the value of new uncertainty quantification tools to estimate ANN prediction uncertainty in computational chemistry, and we provide additional heuristics for identification of when a compound of interest is likely to be poorly predicted by the ANN. The ANNs developed in this work provide a strategy for screening transition metal complexes both with direct ANN prediction and with improved structure generation for validation with first principles simulation.
منابع مشابه
Plumbum(II) and Zinc(II) Complexes with 5-Chlorosalicylic Acid: Structure and Propertie
Abstract: Two new transition metal complexes, containing the acidic ligand 5-chlorosalicylic acid (H2L5), and 1,10-phenanthroline(phen) and 1,3-Di(4-pyridyl)propane (bpp) as secondary ligands are reported. They are formulated as {[Pb(HL5)2(phen)(H2O)]·H2O}n(1), [Zn2(HL5)4(bpp)2]n(2). All the complexes are characterized by single-crystal X-ray diffractions. Compoud 1 crystallizes in the triclini...
متن کاملDFT and HF Studies: Geometry, Hydrogen Bonding, Vibrational Frequencies and Electronic Properties of Enaminones and Their Complexes with Transition Metals
Enaminones are those structures made up three various functional groups including carbonyl, alkeneand amine groups which arelocated along with each other in a conjugate fashion. These compoundsare of much attention due to special characteristics and numerous applications. In the paper, sixvarious enaminone structures were theoretically optimized and after concluding, were compared withequivalen...
متن کاملSTUDY ON THE COMPLEX FORMATION BETWEEN N-PROPYLSALICYLIDENE BASED ON SILICA AS ION EXCHANGER AND SOME TRANSITION METAL IONS
N-propylsalicylidene based on silica as ion exchanger (IE) was used for the separation by complexation of Mn2+, Co2+, Ni2+, Cu2+, Hg2+, Cr3+, Fe3+, and UO22+ from their parent solutions. IE and its metal complexes are characterized by elemental analysis, electronic and infrared spectra, in addition to thermal analysis in atmospheric pressure. The mode of chelation and the proposed geometric str...
متن کاملInvestigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method
Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) were studied for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...
متن کاملThe Kinetic and Thermal Degradation Studies of N-(4-Acetyl-phenyl)-acetimidic Acid Pyridine-3-yl ester Metal(II) Complexes
Schiff base complexes of transition metals are of particular interest to inorganic chemists because of their structural, spectral and chemical properties, which are often strongly dependant on the nature of the ligand structure. Large number of metal (II) complexes with Schiff-base ligands has been extensively studied for their interesting structural specialties, applications and properties. Th...
متن کامل